
NAG Fortran Library Routine Document

D03RBF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D03RBF integrates a system of linear or nonlinear, time-dependent partial differential equations (PDEs) in
two space dimensions on a rectilinear domain. The method of lines is employed to reduce the PDEs to a
system of ordinary differential equations (ODEs) which are solved using a backward differentiation
formula (BDF) method. The resulting system of nonlinear equations is solved using a modified Newton
method and a Bi-CGSTAB iterative linear solver with ILU preconditioning. Local uniform grid refinement
is used to improve the accuracy of the solution. D03RBF originates from the VLUGR2 package (see
Blom and Verwer (1993) and Blom et al. (1996)).

2 Specification

SUBROUTINE D03RBF (NPDE, TS, TOUT, DT, TOLS, TOLT, INIDOM, PDEDEF,
1 BNDARY, PDEIV, MONITR, OPTI, OPTR, RWK, LENRWK, IWK,
2 LENIWK, LWK, LENLWK, ITRACE, IND, IFAIL)

INTEGER NPDE, OPTI(4), LENRWK, IWK(LENIWK), LENIWK, LENLWK,
1 ITRACE, IND, IFAIL
double precision TS, TOUT, DT(3), TOLS, TOLT, OPTR(3,NPDE),

1 RWK(LENRWK)
LOGICAL LWK(LENLWK)
EXTERNAL INIDOM, PDEDEF, BNDARY, PDEIV, MONITR

3 Description

D03RBF integrates the system of PDEs:

Fj t; x; y; u; ut; ux; uy; uxx; uxy; uyy
� �

¼ 0, j ¼ 1; 2; . . . ;NPDE, x; yð Þ 2 �, t0 � t � tout, ð1Þ

where � is an arbitrary rectilinear domain, i.e., a domain bounded by perpendicular straight lines. If the
domain is rectangular then it is recommended that D03RAF is used.

The vector u is the set of solution values

u x; y; tð Þ ¼ u1 x; y; tð Þ; . . . ; uNPDE x; y; tð Þ
h iT

,

and ut denotes partial differentiation with respect to t, and similarly for ux, etc.

The functions Fj must be supplied by you in a (sub)program PDEDEF. Similarly the initial values of the
functions u x; y; tð Þ for x; yð Þ 2 � must be specified at t ¼ t0 in a (sub)program PDEIV.

Note that whilst complete generality is offered by the master equations (1), D03RBF is not appropriate for
all PDEs. In particular, hyperbolic systems should not be solved using this routine. Also, at least one
component of ut must appear in the system of PDEs.

The boundary conditions must be supplied by you in a (sub)program BNDARY in the form

Gj t; x; y; u; ut; ux; uy
� �

¼ 0 j ¼ 1; 2; . . . ;NPDE, x; yð Þ 2 @�, t0 � t � tout. ð2Þ

The domain is covered by a uniform coarse base grid specified by you, and nested finer uniform subgrids
are subsequently created in regions with high spatial activity. The refinement is controlled using a space
monitor which is computed from the current solution and a user-supplied space tolerance TOLS. A
number of optional parameters, e.g., the maximum number of grid levels at any time, and some weighting
factors, can be specified in the arrays OPTI and OPTR. Further details of the refinement strategy can be
found in Section 8.
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The system of PDEs and the boundary conditions are discretized in space on each grid using a standard
second-order finite difference scheme (centred on the internal domain and one-sided at the boundaries), and
the resulting system of ODEs is integrated in time using a second-order, two-step, implicit BDF method
with variable step size. The time integration is controlled using a time monitor computed at each grid level
from the current solution and a user-supplied time tolerance TOLT, and some further optional user-
specified weighting factors held in OPTR (see Section 8 for details). The time monitor is used to compute
a new step size, subject to restrictions on the size of the change between steps, and (optional) user-
specified maximum and minimum step sizes held in DT. The step size is adjusted so that the remaining
integration interval is an integer number times �t. In this way a solution is obtained at t ¼ tout.

A modified Newton method is used to solve the nonlinear equations arising from the time integration. You
may specify (in OPTI) the maximum number of Newton iterations to be attempted. A Jacobian matrix is
calculated at the beginning of each time step. If the Newton process diverges or the maximum number of
iterations is exceeded, a new Jacobian is calculated using the most recent iterates and the Newton process
is restarted. If convergence is not achieved after the (optional) user-specified maximum number of new
Jacobian evaluations, the time step is retried with �t ¼ �t=4. The linear systems arising from the Newton
iteration are solved using a Bi-CGSTAB iterative method, in combination with ILU preconditioning. The
maximum number of iterations can be specified by you in OPTI.

In order to define the base grid you must first specify a virtual uniform rectangular grid which contains the
entire base grid. The position of the virtual grid in physical x; yð Þ space is given by the x; yð Þ co-ordinates
of its boundaries. The number of points nx and ny in the x and y directions must also be given,
corresponding to the number of columns and rows respectively. This is sufficient to determine precisely
the x; yð Þ co-ordinates of all virtual grid points. Each virtual grid point is then referred to by integer co-
ordinates vx; vy

� �
, where 0; 0ð Þ corresponds to the lower-left corner and nx � 1; ny � 1

� �
corresponds to the

upper-right corner. vx and vy are also referred to as the virtual column and row indices respectively.

The base grid is then specified with respect to the virtual grid, with each base grid point coinciding with a
virtual grid point. Each base grid point must be given an index, starting from 1, and incrementing row-
wise from the leftmost point of the lowest row. Also, each base grid row must be numbered consecutively
from the lowest row in the grid, so that row 1 contains grid point 1.

As an example, consider the domain consisting of the two separate squares shown in Figure 1. The left-
hand diagram shows the virtual grid and its integer co-ordinates (i.e., its column and row indices), and the
right-hand diagram shows the base grid point indices and the base row indices (in brackets).
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Figure 1

Hence the base grid point with index 6 say is in base row 2, virtual column 4, and virtual row 1, i.e.,
virtual grid integer co-ordinates 4; 1ð Þ; and the base grid point with index 19 say is in base row 5, virtual
column 2, and virtual row 5, i.e., virtual grid integer co-ordinates 2; 5ð Þ.
The base grid must then be defined in the user-supplied (sub)program INIDOM by specifying the number
of base grid rows, the number of base grid points, the number of boundaries, the number of boundary
points, and the following integer arrays:

LROW contains the base grid indices of the starting points of the base grid rows;

IROW contains the virtual row numbers vy of the base grid rows;

ICOL contains the virtual column numbers vx of the base grid points;
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LBND contains the grid indices of the boundary edges (without corners) and corner points;

LLBND contains the starting elements of the boundaries and corners in LBND.

Finally, ILBND contains the types of the boundaries and corners, as follows:

Boundaries:

1 – lower boundary

2 – left boundary

3 – upper boundary

4 – right boundary

External corners (90�):

12 – lower-left corner

23 – upper-left corner

34 – upper-right corner

41 – lower-right corner

Internal corners (270�):

21 – lower-left corner

32 – upper-left corner

43 – upper-right corner

14 – lower-right corner

Figure 2 shows the boundary types of a domain with a hole. Notice the logic behind the labelling of the
corners: each one includes the types of the two adjacent boundary edges, in a clockwise fashion (outside
the domain).
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As an example, consider the domain shown in Figure 3. The left-hand diagram shows the physical domain
and the right-hand diagram shows the base and virtual grids. The numbers outside the base grid are the
indices of the left and rightmost base grid points, and the numbers inside the base grid are the boundary or
corner numbers, indicating the order in which the boundaries are stored in LBND.
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Figure 3

For this example we have

NROWS = 11
NPTS = 105
NBNDS = 28
NBPTS = 72

LROW = (1,4,15,26,37,46,57,68,79,88,97)

IROW = (0,1,2,3,4,5,6,7,8,9,10)

ICOL = (0,1,2,
0,1,2,3,4,5,6,7,8,9,10,
0,1,2,3,4,5,6,7,8,9,10,
0,1,2,3,4,5,6,7,8,9,10,
0,1,2,3,4,5,8,9,10,
0,1,2,3,4,5,6,7,8,9,10,
0,1,2,3,4,5,6,7,8,9,10,
0,1,2,3,4,5,6,7,8,9,10,
0,1,2,3,4,5,6,7,8,
0,1,2,3,4,5,6,7,8,
0,1,2,3,4,5,6,7,8)

LBND = (2,
4,15,26,37,46,57,68,79,88,
98,99,100,101,102,103,104,
96,
86,85,84,83,82,
70,59,48,39,28,17,6,
8,9,10,11,12,13,
18,29,40,49,60,
72,73,74,75,76,77,
67,56,45,36,25,
33,32,
42,
52,53,
43,
1,97,105,87,81,3,7,71,78,14,31,51,54,34)

LLBND = (1,2,11,18,19,24,31,37,42,48,53,55,56,58,59,60,
61,62,63,64,65,66,67,68,69,70,71,72)

ILBND = (1,2,3,4,1,4,1,2,3,4,3,4,1,2,12,23,34,41,14,41,
12,23,34,41,43,14,21,32)

This particular domain is used in the example in Section 9, and data statements are used to define the
above arrays in that example program. For less complicated domains it is simpler to assign the values of
the arrays in do-loops. This also allows flexibility in the number of base grid points.

The routine D03RYF can be called from INIDOM to obtain a simple graphical representation of the base
grid, and to verify the data that you have specified in INIDOM.

Subgrids are stored internally using the same data structure, and solution information is communicated to
you in the user-supplied (sub)programs PDEIV, PDEDEF and BNDARY in arrays according to the grid
index on the particular level, e.g., XðiÞ and YðiÞ contain the x; yð Þ co-ordinates of grid point i, and Uði; jÞ
contains the jth solution component uj at grid point i.
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The grid data and the solutions at all grid levels are stored in the workspace arrays, along with other
information needed for a restart (i.e., a continuation call). It is not intended that you extract the solution
from these arrays, indeed the necessary information regarding these arrays is not provided. The user-
supplied monitor (sub)program MONITR should be used to obtain the solution at particular levels and
times. MONITR is called at the end of every time step, with the last step being identified via the input
parameter TLAST. The routine D03RZF should be called from MONITR to obtain grid information at a
particular level.

Further details of the underlying algorithm can be found in Section 8 and in Blom and Verwer (1993) and
Blom et al. (1996) and the references therein.

4 References

Blom J G, Trompert R A and Verwer J G (1996) Algorithm 758. VLUGR2: A vectorizable adaptive grid
solver for PDEs in 2D Trans. Math. Software 22 302–328

Blom J G and Verwer J G (1993) VLUGR2: A vectorized local uniform grid refinement code for PDEs in
2D Report NM-R9306 CWI, Amsterdam

Trompert R A (1993) Local uniform grid refinement and systems of coupled partial differential equations
Appl. Numer. Maths 12 331–355

Trompert R A and Verwer J G (1993) Analysis of the implicit Euler local uniform grid refinement method
SIAM J. Sci. Comput. 14 259–278

5 Parameters

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

Constraint: NPDE � 1.

2: TS – double precision Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t which has been reached. Normally TS ¼ TOUT.

Constraint: TS < TOUT.

3: TOUT – double precision Input

On entry: the final value of t to which the integration is to be carried out.

4: DTð3Þ – double precision array Input/Output

On entry: the initial, minimum and maximum time step sizes respectively.

DTð1Þ specifies the initial time step size to be used on the first entry, i.e., when IND ¼ 0. If
DTð1Þ ¼ 0:0 then the default value DTð1Þ ¼ 0:01� TOUT� TSð Þ is used. On subsequent entries
(IND ¼ 1), the value of DTð1Þ is not referenced.

DTð2Þ specifies the minimum time step size to be attempted by the integrator. If DTð2Þ ¼ 0:0 the
default value DTð2Þ ¼ 10:0�machine precision is used.

DTð3Þ specifies the maximum time step size to be attempted by the integrator. If DTð3Þ ¼ 0:0 the
default value DTð3Þ ¼ TOUT� TS is used.

On exit: DTð1Þ contains the time step size for the next time step. DTð2Þ and DTð3Þ are unchanged
or set to their default values if zero on entry.

Constraints:

if IND ¼ 1, DTð1Þ is unconstrained;
DTð1Þ � 0 and 10:0�machine precision�max TSj j; TOUTj jð Þ � DTð1Þ � TOUT� TS
and DTð2Þ � DTð1Þ � DTð3Þ otherwise.
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Where the values of DTð2Þ and DTð3Þ will have been reset to their default values if zero on entry.

DTð2Þ and DTð3Þ must satisfy DTðiÞ � 0, for i ¼ 2; 3 and DTð2Þ � DTð3Þ for IND ¼ 0 and
IND ¼ 1

5: TOLS – double precision Input

On entry: the space tolerance used in the grid refinement strategy (� in equation (4)). See
Section 8.2.

Constraint: TOLS > 0:0.

6: TOLT – double precision Input

On entry: the time tolerance used to determine the time step size (� in equation (7)). See
Section 8.3.

Constraint: TOLT > 0:0.

7: INIDOM – SUBROUTINE, supplied by the user. External Procedure

INIDOM must specify the base grid in terms of the data structure described in Section 3. INIDOM
is not referenced if, on entry, IND ¼ 1. D03RYF can be called from INIDOM to obtain a simple
graphical representation of the base grid, and to verify the data that you have specified in INIDOM.
D03RBF also checks the validity of the data, but you are strongly advised to call D03RYF to ensure
that the base grid is exactly as required.

Note: the boundaries of the base grid should consist of as many points as are necessary to employ
second-order space discretization, i.e., a boundary enclosing the internal part of the domain must
include at least 3 grid points including the corners. If Neumann boundary conditions are to be
applied the minimum is 4

Its specification is:

SUBROUTINE INIDOM (MAXPTS, XMIN, XMAX, YMIN, YMAX, NX, NY, NPTS,
1 NROWS, NBNDS, NBPTS, LROW, IROW, ICOL, LLBND,
2 ILBND, LBND, IERR)

INTEGER MAXPTS, NX, NY, NPTS, NROWS, NBNDS, NBPTS,
1 LROW(*), IROW(*), ICOL(*), LLBND(*), ILBND(*),
2 LBND(*), IERR
double precision XMIN, XMAX, YMIN, YMAX

1: MAXPTS – INTEGER Input

On entry: the maximum number of base grid points allowed by the available workspace.

2: XMIN – double precision Output
3: XMAX – double precision Output

On exit: the extents of the virtual grid in the x-direction, i.e., the x co-ordinates of the left
and right boundaries respectively.

4: YMIN – double precision Output
5: YMAX – double precision Output

On exit: the extents of the virtual grid in the y-direction, i.e., the y co-ordinates of the left
and right boundaries respectively.

6: NX – INTEGER Output
7: NY – INTEGER Output

On exit: the number of virtual grid points in the x- and y-direction respectively (including
the boundary points).
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8: NPTS – INTEGER Output

On exit: the total number of points in the base grid. If the required number of points is
greater than MAXPTS then INIDOM must be exited immediately with IERR set to �1 to
avoid overwriting memory.

9: NROWS – INTEGER Output

On exit: the total number of rows of the virtual grid that contain base grid points. This is
the maximum base row index.

10: NBNDS – INTEGER Output

On exit: the total number of physical boundaries and corners in the base grid.

11: NBPTS – INTEGER Output

On exit: the total number of boundary points in the base grid.

12: LROWð�Þ – INTEGER array Output

Note: the dimension of the array LROW must be at least NROWS.

On exit: LROWðiÞ, for i ¼ 1; 2; . . . ;NROWS, must contain the base grid index of the first
grid point in base grid row i.

13: IROWð�Þ – INTEGER array Output

Note: the dimension of the array IROW must be at least NROWS.

On exit: IROWðiÞ, for i ¼ 1; 2; . . . ;NROWS, must contain the virtual row number vy that
corresponds to base grid row i.

14: ICOLð�Þ – INTEGER array Output

Note: the dimension of the array ICOL must be at least NPTS.

On exit: ICOLðiÞ, for i ¼ 1; 2; . . . ;NPTS, must contain the virtual column number vx that
contains base grid point i.

15: LLBNDð�Þ – INTEGER array Output

Note: the dimension of the array LLBND must be at least NBNDS.

On exit: LLBNDðiÞ, for i ¼ 1; 2; . . . ;NBNDS, must contain the element of LBND
corresponding to the start of the ith boundary or corner.

Note: the order of the boundaries and corners in LLBND must be first all the boundaries
and then all the corners. The end points of a boundary (i.e., the adjacent corner points)
must not be included in the list of points on that boundary. Also, if a corner is shared by
two pairs of physical boundaries then it has two types and must therefore be treated as two
corners.

16: ILBNDð�Þ – INTEGER array Output

Note: the dimension of the array ILBND must be at least NBNDS.

On exit: ILBNDðiÞ, for i ¼ 1; 2; . . . ;NBNDS, must contain the type of the ith boundary
(or corner), as given in Section 3.

17: LBNDð�Þ – INTEGER array Output

Note: the dimension of the array LBND must be at least NBPTS.

On exit: LBNDðiÞ, for i ¼ 1; 2; . . . ;NBPTS, must contain the grid index of the ith
boundary point. The order of the boundaries is as specified in LLBND, but within this
restriction the order of the points in LBND is arbitrary.
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18: IERR – INTEGER Input/Output

On entry: will be initialized by D03RBF to some value prior to internal calls to INIDOM.

On exit: if the required number of grid points is larger than MAXPTS, IERR must be set
to �1 to force a termination of the integration and an immediate return to the calling
program with IFAIL ¼ 3. Otherwise, IERR should remain unchanged.

INIDOM must be declared as EXTERNAL in the (sub)program from which D03RBF is called.
Parameters denoted as Input must not be changed by this procedure.

8: PDEDEF – SUBROUTINE, supplied by the user. External Procedure

PDEDEF must evaluate the functions Fj, for j ¼ 1; 2; . . . ;NPDE, in equation (1) which define the
system of PDEs (i.e., the residuals of the resulting ODE system) at all interior points of the domain.
Values at points on the boundaries of the domain are ignored and will be overwritten by the user-
supplied (sub)program BNDARY. PDEDEF is called for each subgrid in turn.

Its specification is:

SUBROUTINE PDEDEF (NPTS, NPDE, T, X, Y, U, UT, UX, UY, UXX, UXY,
1 UYY, RES)

INTEGER NPTS, NPDE
double precision T, X(NPTS), Y(NPTS), U(NPTS,NPDE), UT(NPTS,NPDE),

1 UX(NPTS,NPDE), UY(NPTS,NPDE), UXX(NPTS,NPDE),
2 UXY(NPTS,NPDE), UYY(NPTS,NPDE), RES(NPTS,NPDE)

1: NPTS – INTEGER Input

On entry: the number of grid points in the current grid.

2: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

3: T – double precision Input

On entry: the current value of the independent variable t.

4: XðNPTSÞ – double precision array Input

On entry: XðiÞ contains the x co-ordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

5: YðNPTSÞ – double precision array Input

On entry: YðiÞ contains the y co-ordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

6: UðNPTS,NPDEÞ – double precision array Input

On entry: Uði; jÞ contains the value of the jth PDE component at the ith grid point, for
i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

7: UTðNPTS,NPDEÞ – double precision array Input

On entry: UTði; jÞ contains the value of
@u

@t
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

8: UXðNPTS,NPDEÞ – double precision array Input

On entry: UXði; jÞ contains the value of
@u

@x
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.
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9: UYðNPTS,NPDEÞ – double precision array Input

On entry: UYði; jÞ contains the value of
@u

@y
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

10: UXXðNPTS,NPDEÞ – double precision array Input

On entry: UXXði; jÞ contains the value of
@2u

@x2
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

11: UXYðNPTS,NPDEÞ – double precision array Input

On entry: UXYði; jÞ contains the value of
@2u

@x@y
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

12: UYYðNPTS,NPDEÞ – double precision array Input

On entry: UYYði; jÞ contains the value of
@2u

@y2
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

13: RESðNPTS,NPDEÞ – double precision array Output

On exit: RESði; jÞ must contain the value of Fj for j ¼ 1; 2; . . . ;NPDE, at the ith grid point
for i ¼ 1; 2; . . . ;NPTS, although the residuals at boundary points will be ignored (and
overwritten later on) and so they need not be specified here.

PDEDEF must be declared as EXTERNAL in the (sub)program from which D03RBF is called.
Parameters denoted as Input must not be changed by this procedure.

9: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must evaluate the functions Gj, for j ¼ 1; 2; . . . ;NPDE, in equation (2) which define the
boundary conditions at all boundary points of the domain. Residuals at interior points must not be
altered by this (sub)program.

Its specification is:

SUBROUTINE BNDARY (NPTS, NPDE, T, X, Y, U, UT, UX, UY, NBNDS, NBPTS,
1 LLBND, ILBND, LBND, RES)

INTEGER NPTS, NPDE, NBNDS, NBPTS, LLBND(NBNDS),
1 ILBND(NBNDS), LBND(NBPTS)
double precision T, X(NPTS), Y(NPTS), U(NPTS,NPDE), UT(NPTS,NPDE),

1 UX(NPTS,NPDE), UY(NPTS,NPDE), RES(NPTS,NPDE)

1: NPTS – INTEGER Input

On entry: the number of grid points in the current grid.

2: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

3: T – double precision Input

On entry: the current value of the independent variable t.

4: XðNPTSÞ – double precision array Input

On entry: XðiÞ contains the x co-ordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.
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5: YðNPTSÞ – double precision array Input

On entry: YðiÞ contains the y co-ordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

6: UðNPTS,NPDEÞ – double precision array Input

On entry: Uði; jÞ contains the value of the jth PDE component at the ith grid point, for
i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

7: UTðNPTS,NPDEÞ – double precision array Input

On entry: UTði; jÞ contains the value of
@u

@t
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

8: UXðNPTS,NPDEÞ – double precision array Input

On entry: UXði; jÞ contains the value of
@u

@x
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

9: UYðNPTS,NPDEÞ – double precision array Input

On entry: UYði; jÞ contains the value of
@u

@y
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

10: NBNDS – INTEGER Input

On entry: the total number of physical boundaries and corners in the grid.

11: NBPTS – INTEGER Input

On entry: the total number of boundary points in the grid.

12: LLBNDðNBNDSÞ – INTEGER array Input

On entry: LLBNDðiÞ, for i ¼ 1; 2; . . . ;NBNDS, contains the element of LBND
corresponding to the start of the ith boundary (or corner).

13: ILBNDðNBNDSÞ – INTEGER array Input

On entry: ILBNDðiÞ, for i ¼ 1; 2; . . . ;NBNDS, contains the type of the ith boundary, as
given in Section 3.

14: LBNDðNBPTSÞ – INTEGER array Input

On entry: LBNDðiÞ, for i ¼ 1; 2; . . . ;NBPTS, contains the grid index of the ith boundary
point, where the order of the boundaries is as specified in LLBND. Hence the ith
boundary point has co-ordinates XðLBNDðiÞÞ and YðLBNDðiÞÞ, and the corresponding
solution values are UðLBNDðiÞjÞ, for j ¼ 1; 2; . . . ;NPDE.

15: RESðNPTS,NPDEÞ – double precision array Input/Output

On entry: contains function values returned by PDEDEF.

On exit: RESðLBNDðiÞjÞ must contain the value of Gj, for j ¼ 1; 2; . . . ;NPDE, at the ith
boundary point, for i ¼ 1; 2; . . . ;NBPTS.

Note: elements of RES corresponding to interior points, i.e., points not included in LBND,
must not be altered.

BNDARY must be declared as EXTERNAL in the (sub)program from which D03RBF is called.
Parameters denoted as Input must not be changed by this procedure.

D03RBF NAG Fortran Library Manual

D03RBF.10 [NP3657/21]



10: PDEIV – SUBROUTINE, supplied by the user. External Procedure

PDEIV must specify the initial values of the PDE components u at all points in the base grid.
PDEIV is not referenced if, on entry, IND ¼ 1.

Its specification is:

SUBROUTINE PDEIV (NPTS, NPDE, T, X, Y, U)

INTEGER NPTS, NPDE
double precision T, X(NPTS), Y(NPTS), U(NPTS,NPDE)

1: NPTS – INTEGER Input

On entry: the number of grid points in the base grid.

2: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

3: T – double precision Input

On entry: the (initial) value of the independent variable t.

4: XðNPTSÞ – double precision array Input

On entry: XðiÞ contains the x co-ordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

5: YðNPTSÞ – double precision array Input

On entry: YðiÞ contains the y co-ordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

6: UðNPTS,NPDEÞ – double precision array Output

On exit: Uði; jÞ must contain the value of the jth PDE component at the ith grid point, for
i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

PDEIV must be declared as EXTERNAL in the (sub)program from which D03RBF is called.
Parameters denoted as Input must not be changed by this procedure.

11: MONITR – SUBROUTINE, supplied by the user. External Procedure

MONITR is called by D03RBF at the end of every successful time step, and may be used to
examine or print the solution or perform other tasks such as error calculations, particularly at the
final time step, indicated by the parameter TLAST.

The input arguments contain information about the grid and solution at all grid levels used.
D03RZF should be called from MONITR in order to extract the number of points and their x; yð Þ
co-ordinates on a particular grid.

MONITR can also be used to force an immediate tidy termination of the solution process and return
to the calling program.

Its specification is:

SUBROUTINE MONITR (NPDE, T, DT, DTNEW, TLAST, NLEV, XMIN, YMIN, DXB,
1 DYB, LGRID, ISTRUC, LSOL, SOL, IERR)

INTEGER NPDE, NLEV, LGRID(*), ISTRUC(*), LSOL(NLEV), IERR
double precision T, DT, DTNEW, XMIN, YMIN, DXB, DYB, SOL(*)
LOGICAL TLAST

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.
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2: T – double precision Input

On entry: the current value of the independent variable t, i.e., the time at the end of the
integration step just completed.

3: DT – double precision Input

On entry: the current time step size �t, i.e., the time step size used for the integration step
just completed.

4: DTNEW – double precision Input

On entry: the time step size that will be used for the next time step.

5: TLAST – LOGICAL Input

On entry: indicates if intermediate or final time step. TLAST ¼ :FALSE: for an
intermediate step, TLAST ¼ :TRUE: for the last call to MONITR before returning to your
program.

6: NLEV – INTEGER Input

On entry: the number of grid levels used at time T.

7: XMIN – double precision Input
8: YMIN – double precision Input

On entry: the x; yð Þ co-ordinates of the lower-left corner of the virtual grid.

9: DXB – double precision Input
10: DYB – double precision Input

On entry: the sizes of the base grid spacing in the x- and y-direction respectively.

11: LGRIDð�Þ – INTEGER array Input

Note: the dimension of the array LGRID must be at least NLEVþ 1.

On entry: contains pointers to the start of the grid structures in ISTRUC, and must be
passed unchanged to D03RZF in order to extract the grid information.

12: ISTRUCð�Þ – INTEGER array Input

Note: the dimension of the array ISTRUC must be at least 3� NLEV.

On entry: contains the grid structures for each grid level and must be passed unchanged to
D03RZF in order to extract the grid information.

13: LSOLðNLEVÞ – INTEGER array Input

On entry: LSOLðlÞ contains the pointer to the solution in SOL at grid level l and time T.
(LSOLðlÞ actually contains the array index immediately preceding the start of the solution
in SOL.)

14: SOLð�Þ – double precision array Input

Note: the dimension of the array SOL must be at least NPDE� n1 þ . . .þ nNLEV

� �
.

On entry: contains the solution u at time T for each grid level l in turn, positioned
according to LSOL. More precisely

Uði; jÞ ¼ SOL LSOLðlÞ þ j� 1ð Þ � nl þ ið Þ
represents the jth component of the solution at the ith grid point in the lth level, for
i ¼ 1; . . . ; nl; j ¼ 1; . . . ;NPDE; l ¼ 1; . . . ;NLEV, where nl is the number of grid points at
level l (obtainable by a call to D03RZF).
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15: IERR – INTEGER Input/Output

On entry: will be initialized by D03RBF to some value prior to internal calls to INIDOM.

On exit: should be set to 1 to force a termination of the integration and an immediate
return to the calling program with IFAIL ¼ 4. IERR should remain unchanged otherwise.

MONITR must be declared as EXTERNAL in the (sub)program from which D03RBF is called.
Parameters denoted as Input must not be changed by this procedure.

12: OPTIð4Þ – INTEGER array Input

On entry: may be set to control various options available in the integrator.

OPTIð1Þ ¼ 0

All the default options are employed.

OPTIð1Þ > 0

The default value of OPTIðiÞ, for i ¼ 2; 3 or 4, can be obtained by setting OPTIðiÞ ¼ 0.

OPTIð1Þ
Specifies the maximum number of grid levels allowed (including the base grid).
OPTIð1Þ � 0. The default value is OPTIð1Þ ¼ 3.

OPTIð2Þ
Specifies the maximum number of Jacobian evaluations allowed during each nonlinear
equations solution. OPTIð2Þ � 0. The default value is OPTIð2Þ ¼ 2.

OPTIð3Þ
Specifies the maximum number of Newton iterations in each nonlinear equations solution.
OPTIð3Þ � 0. The default value is OPTIð3Þ ¼ 10.

OPTIð4Þ
Specifies the maximum number of iterations in each linear equations solution. OPTIð4Þ � 0.
The default value is OPTIð4Þ ¼ 100.

Constraint: OPTIð1Þ � 0 and if OPTIð1Þ > 0, OPTIðiÞ � 0, for i ¼ 2; 3 or 4.

13: OPTRð3,NPDEÞ – double precision array Input

On entry: may be used to specify the optional vectors umax , ws and wt in the space and time
monitors (see Section 8).

If an optional vector is not required then all its components should be set to 1:0.

OPTRð1; jÞ, for j ¼ 1; 2; . . . ;NPDE, specifies umax
j , the approximate maximum absolute value of the

jth component of u, as used in (4) and (7). OPTRð1; jÞ > 0:0 for j ¼ 1; 2; . . . ;NPDE.

OPTRð2; jÞ, for j ¼ 1; 2; . . . ;NPDE, specifies ws
j , the weighting factors used in the space monitor

(see (4)) to indicate the relative importance of the jth component of u on the space monitor.
OPTRð2; jÞ � 0:0 for j ¼ 1; 2; . . . ;NPDE.

OPTRð3; jÞ, for j ¼ 1; 2; . . . ;NPDE, specifies wt
j, the weighting factors used in the time monitor (see

(6)) to indicate the relative importance of the jth component of u on the time monitor.
OPTRð3; jÞ � 0:0, for j ¼ 1; 2; . . . ;NPDE.

Constraint: OPTR 1; jð Þ > 0:0, for j ¼ 1; 2; . . . ;NPDE, and OPTRði; jÞ � 0:0, for i ¼ 2; 3 and
j ¼ 1; 2; . . . ;NPDE.

14: RWKðLENRWKÞ – double precision array Communication Array
15: LENRWK – INTEGER Input

On entry: the dimension of the array RWK as declared in the (sub)program from which D03RBF is
called.
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The required value of LENRWK cannot be determined exactly in advance, but a suggested value is

LENRWK ¼ maxpts� NPDE� 5� l þ 18� NPDEþ 9ð Þ þ 2�maxpts,

where l ¼ OPTIð1Þ if OPTIð1Þ 6¼ 0 and l ¼ 3 otherwise, and maxpts is the expected maximum
number of grid points at any one level. If during the execution the supplied value is found to be too
small then the routine returns with IFAIL ¼ 3 and an estimated required size is printed on the
current error message unit (see X04AAF).

Note: the size of LENRWK cannot be checked upon initial entry to D03RBF since the number of
grid points on the base grid is not known.

16: IWKðLENIWKÞ – INTEGER array Communication Array

On entry: if IND ¼ 0, IWK need not be set. Otherwise IWK must remain unchanged from a
previous call to D03RBF.

On exit: the following components of the array IWK concern the efficiency of the integration. Here,
m is the maximum number of grid levels allowed (m ¼ OPTIð1Þ if OPTIð1Þ > 1 and m ¼ 3
otherwise), and l is a grid level taking the values l ¼ 1; 2; . . . ; nl, where nl is the number of levels
used.

IWKð1Þ
Contains the number of steps taken in time.

IWKð2Þ
Contains the number of rejected time steps.

IWKð2þ lÞ
Contains the total number of residual evaluations performed (i.e., the number of times
PDEDEF was called) at grid level l.

IWKð2þ mþ lÞ
Contains the total number of Jacobian evaluations performed at grid level l.

IWKð2þ 2� mþ lÞ
Contains the total number of Newton iterations performed at grid level l.

IWKð2þ 3� mþ lÞ
Contains the total number of linear solver iterations performed at grid level l.

IWKð2þ 4� mþ lÞ
Contains the maximum number of Newton iterations performed at any one time step at grid
level l.

IWKð2þ 5� mþ lÞ
Contains the maximum number of linear solver iterations performed at any one time step at
grid level l.

Note: the total and maximum numbers are cumulative over all calls to D03RBF. If the specified
maximum number of Newton or linear solver iterations is exceeded at any stage, then the
maximums above are set to the specified maximum plus one.

17: LENIWK – INTEGER Input

On entry: the dimension of the array IWK as declared in the (sub)program from which D03RBF is
called.

The required value of LENIWK cannot be determined exactly in advance, but a suggested value is

LENIWK ¼ maxpts� 14þ 5� mð Þ þ 7� mþ 2,

where maxpts is the expected maximum number of grid points at any one level and m ¼ OPTIð1Þ
if OPTIð1Þ > 0 and m ¼ 3 otherwise. If during the execution the supplied value is found to be too
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small then the routine returns with IFAIL ¼ 3 and an estimated required size is printed on the
current error message unit (see X04AAF).

Note: the size of LENIWK cannot be checked upon initial entry to D03RBF since the number of
grid points on the base grid is not known.

18: LWKðLENLWKÞ – LOGICAL array Workspace
19: LENLWK – INTEGER Input

On entry: the dimension of the array LWK as declared in the (sub)program from which D03RBF is
called.

The required value of LENLWK cannot be determined exactly in advance, but a suggested value is

LENLWK ¼ maxptsþ 1,

where maxpts is the expected maximum number of grid points at any one level. If during the
execution the supplied value is found to be too small then the routine returns with IFAIL ¼ 3 and
an estimated required size is printed on the current error message unit (see X04AAF).

Note: the size of LENLWK cannot be checked upon initial entry to D03RBF since the number of
grid points on the base grid is not known.

20: ITRACE – INTEGER Input

On entry: the level of trace information required from D03RBF. ITRACE may take the value �1,
0, 1, 2, or 3.

ITRACE ¼ �1

No output is generated.

ITRACE ¼ 0

Only warning messages are printed.

ITRACE > 0

Output from the underlying solver is printed on the current advisory message unit (see
X04ABF). This output contains details of the time integration, the nonlinear iteration and the
linear solver.

If ITRACE < �1, then �1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

The advisory messages are given in greater detail as ITRACE increases. Setting ITRACE ¼ 1
allows you to monitor the progress of the integration without possibly excessive information.

21: IND – INTEGER Input/Output

On entry: must be set to 0 or 1.

IND ¼ 0

Starts the integration in time.

IND ¼ 1

Continues the integration after an earlier exit from the routine. In this case, only the
following parameters may be reset between calls to D03RBF: TOUT, DTð2Þ, DTð3Þ, TOLS,
TOLT, OPTI, OPTR, ITRACE and IFAIL.

Constraint: 0 � IND � 1.

On exit: IND ¼ 1.

22: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NPDE < 1,
or TOUT � TS,
or TOUT is too close to TS,
or IND ¼ 0 and DTð1Þ < 0:0,
or DTðiÞ < 0:0, for i ¼ 2 or 3,
or DTð2Þ > DTð3Þ,
or IND ¼ 0 and 0:0 < DTð1Þ < 10�machine precision�max TSj j; TOUTj jð Þ,
or IND ¼ 0 and DTð1Þ > TOUT� TS,
or IND ¼ 0 and DTð1Þ < DTð2Þ or DTð1Þ > DTð3Þ,
or TOLS or TOLT � 0:0,
or OPTIð1Þ < 0,
or OPTIð1Þ > 0 and OPTIðjÞ < 0, for j ¼ 2, 3 or 4,
or OPTRð1; jÞ � 0:0, for some j ¼ 1; 2; . . . ;NPDE,
or OPTRð2; jÞ < 0:0, for some j ¼ 1; 2; . . . ;NPDE,
or OPTRð3; jÞ < 0:0, for some j ¼ 1; 2; . . . ;NPDE,
or IND 6¼ 0 or 1,
or IND ¼ 1 on initial entry to D03RBF.

IFAIL ¼ 2

The time step size to be attempted is less than the specified minimum size. This may occur
following time step failures and subsequent step size reductions caused by one or more of the
following:

the requested accuracy could not be achieved, i.e., TOLT is too small,

the maximum number of linear solver iterations, Newton iterations or Jacobian evaluations is
too small,

ILU decomposition of the Jacobian matrix could not be performed, possibly due to
singularity of the Jacobian.

Setting ITRACE to a higher value may provide further information.

In the latter two cases you are advised to check their problem formulation in PDEDEF and/or
BNDARY, and the initial values in PDEIV if appropriate.

IFAIL ¼ 3

One or more of the workspace arrays is too small for the required number of grid points. At the
initial time step this error may result because you set IERR to �1 in the user-supplied (sub)program
INIDOM or the internal check on the number of grid points following the call to INIDOM. An
estimate of the required sizes for the current stage is output, but more space may be required at a
later stage.
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IFAIL ¼ 4

IERR was set to 1 in the user-supplied (sub)program MONITR, forcing control to be passed back to
calling program. Integration was successful as far as T ¼ TS.

IFAIL ¼ 5

The integration has been completed but the maximum number of levels specified in OPTIð1Þ was
insufficient at one or more time steps, meaning that the requested space accuracy could not be
achieved. To avoid this warning either increase the value of OPTIð1Þ or decrease the value of
TOLS.

IFAIL ¼ 6

One or more of the output arguments of the user-suppled (sub)program INIDOM was incorrectly
specified, i.e.,

On entry, XMIN � XMAX,
or XMAX too close to XMIN,
or YMIN � YMAX,
or YMAX too close to YMIN,
or NX or NY < 4,
or NROWS < 4,
or NROWS > NY,
or NPTS > NX� NY,
or NBNDS < 8,
or NBPTS < 12,
or NBPTS � NPTS,
or LROWðiÞ < 1 or LROWðiÞ > NPTS, for some i ¼ 1; 2; . . . ;NROWS,
or LROWðiÞ � LROWði� 1Þ, for some i ¼ 2; 3; . . . ;NROWS,
or IROWðiÞ < 0 or IROWðiÞ > NY, for some i ¼ 1; 2; . . . ;NROWS,
or IROWðiÞ � IROWði� 1Þ, for some i ¼ 2; 3; . . . ;NROWS,
or ICOLðiÞ < 0 or ICOLðiÞ > NX, for some i ¼ 1; 2; . . . ;NPTS,
or LLBNDðiÞ < 1 or LLBNDðiÞ > NBPTS, for some i ¼ 1; 2; . . . ;NBNDS,
or LLBNDðiÞ � LLBNDði� 1Þ, for some i ¼ 2; 3; . . . ;NBNDS,
or ILBNDðiÞ 6¼ 1, 2, 3, 4, 12, 23, 34, 41, 21, 32, 43 or 14, for some i ¼ 1; 2; . . . ;NBNDS,
or LBNDðiÞ < 1 or LBNDðiÞ > NPTS, for some i ¼ 1; 2; . . . ;NBPTS.

7 Accuracy

There are three sources of error in the algorithm: space and time discretization, and interpolation (linear)
between grid levels. The space and time discretization errors are controlled separately using the parameters
TOLS and TOLT described in the following section, and you should test the effects of varying these
parameters. Interpolation errors are generally implicitly controlled by the refinement criterion since in
areas where interpolation errors are potentially large, the space monitor will also be large. It can be shown
that the global spatial accuracy is comparable to that which would be obtained on a uniform grid of the
finest grid size. A full error analysis can be found in Trompert and Verwer (1993).

8 Further Comments

8.1 Algorithm Outline

The local uniform grid refinement method is summarized as follows.

1. Initialize the course base grid, an initial solution and an initial time step.

2. Solve the system of PDEs on the current grid with the current time step.

3. If the required accuracy in space and the maximum number of grid levels have not yet been reached:

(a) Determine new finer grid at forward time level.

(b) Get solution values at previous time level(s) on new grid.
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(c) Interpolate internal boundary-values from old grid at forward time.

(d) Get initial values for the Newton process at forward time.

(e) Go to 2.

4. Update the coarser grid solution using the finer grid values.

5. Estimate error in time integration. If time error is acceptable advance time level.

6. Determine new step size then go to 2 with coarse base as current grid.

8.2 Refinement Strategy

For each grid point i a space monitor �s
i is determined by

�s
i ¼ max

j¼1;NPDE
�j �x2 @2

@x2
uj xi; yi; tð Þ

��� ���þ �y2 @2

@y2
uj xi; yi; tð Þ

��� ���� �n o
, ð3Þ

where �x and �y are the grid widths in the x and y directions; and xi, yi are the x; yð Þ co-ordinates at grid
point i. The parameter �j is obtained from

�j ¼
ws
j

umax
j �

, ð4Þ

where � is the user-supplied space tolerance; ws
j is a weighting factor for the relative importance of the jth

PDE component on the space monitor; and umax
j is the approximate maximum absolute value of the jth

component. A value for � must be supplied by you. Values for ws
j and umax

j must also be supplied but
may be set to the values 1:0 if little information about the solution is known.

A new level of refinement is created if

max
i

�s
if g > 0:9 or 1:0, ð5Þ

depending on the grid level at the previous step in order to avoid fluctuations in the number of grid levels
between time steps. If (5) is satisfied then all grid points for which �s

i > 0:25 are flagged and surrounding
cells are quartered in size.

No derefinement takes place as such, since at each time step the solution on the base grid is computed first
and new finer grids are then created based on the new solution. Hence derefinement occurs implicitly. See
Section 8.1.

8.3 Time Integration

The time integration is controlled using a time monitor calculated at each level l up to the maximum level
used, given by

�t
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XNPDE
j¼1

wt
j

XNGPTS lð Þ

i¼1

�t

�ij
ut xi; yi; tð Þ

� �2

vuut ð6Þ

where NGPTS lð Þ is the total number of points on grid level l; N ¼ NGPTS lð Þ � NPDE; �t is the current
time step; ut is the time derivative of u which is approximated by first-order finite differences; wt

j is the
time equivalent of the space weighting factor ws

j ; and �ij is given by

�ij ¼ �
umax
j

100
þ u xi; yi; tð Þj j

� �
ð7Þ

where umax
j is as before, and � is the user-specified time tolerance.

An integration step is rejected and retried at all levels if

max
l

�t
l

	 

> 1:0. ð8Þ
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9 Example

This example is taken from Blom and Verwer (1993) and is the two dimensional Burgers’ system

@u

@t
¼ �u

@u

@x
� v

@u

@y
þ �

@2u

@x2
þ @2u

@y2

� �
,

@v

@t
¼ �u

@v

@x
� v

@v

@y
þ �

@2v

@x2
þ @2v

@y2

� �
,

with � ¼ 10�3 on the domain given in Figure 3. Dirichlet boundary conditions are used on all boundaries
using the exact solution

u ¼ 3
4 �

1

4 1þ exp �4xþ 4y� tð Þ= 32�ð Þð Þð Þ,

v ¼ 3
4 þ

1

4 1þ exp �4xþ 4y� tð Þ= 32�ð Þð Þð Þ.

The solution contains a wave front at y ¼ xþ 0:25t which propagates in a direction perpendicular to the

front with speed
ffiffiffi
2

p
=8.

9.1 Program Text

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

* D03RBF Example Program Text
* Mark 19 Revised. NAG Copyright 1999.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER MXLEV, NPDE, NPTS
PARAMETER (MXLEV=5,NPDE=2,NPTS=3000)
INTEGER LENIWK, LENRWK, LENLWK
PARAMETER (LENIWK=NPTS*(5*MXLEV+14)+2+7*MXLEV,

+ LENRWK=NPTS*NPDE*(5*MXLEV+9+18*NPDE)+2*NPTS,
+ LENLWK=2*NPTS)

* .. Scalars in Common ..
INTEGER IOUT

* .. Arrays in Common ..
DOUBLE PRECISION TWANT(2)

* .. Local Scalars ..
DOUBLE PRECISION TOLS, TOLT, TOUT, TS
INTEGER I, IFAIL, IND, ITRACE, J, MAXLEV

* .. Local Arrays ..
DOUBLE PRECISION DT(3), OPTR(3,NPDE), RWK(LENRWK)
INTEGER IWK(LENIWK), OPTI(4)
LOGICAL LWK(LENLWK)

* .. External Subroutines ..
EXTERNAL BNDRY, D03RBF, INIDM, MONIT, PDEF, PDEIV

* .. Common blocks ..
COMMON /OTIME/TWANT, IOUT

* .. Executable Statements ..
WRITE (NOUT,*) ’D03RBF Example Program Results’

*
IND = 0
ITRACE = 0
TS = 0.0D0
TWANT(1) = 0.25D0
TWANT(2) = 1.0D0
DT(1) = 0.001D0
DT(2) = 1.0D-7
DT(3) = 0.0D0
TOLS = 0.1D0
TOLT = 0.05D0
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OPTI(1) = 5
MAXLEV = OPTI(1)
DO 20 I = 2, 4

OPTI(I) = 0
20 CONTINUE

DO 60 J = 1, NPDE
DO 40 I = 1, 3

OPTR(I,J) = 1.0D0
40 CONTINUE
60 CONTINUE

*
* Call main routine
*

DO 120 IOUT = 1, 2
IFAIL = -1
TOUT = TWANT(IOUT)
CALL D03RBF(NPDE,TS,TOUT,DT,TOLS,TOLT,INIDM,PDEF,BNDRY,PDEIV,

+ MONIT,OPTI,OPTR,RWK,LENRWK,IWK,LENIWK,LWK,LENLWK,
+ ITRACE,IND,IFAIL)

*
* Print statistics
*

WRITE (NOUT,’(’’ Statistics:’’)’)
WRITE (NOUT,’(’’ Time = ’’,F8.4)’) TS
WRITE (NOUT,’(’’ Total number of accepted timesteps =’’, I5)’)

+ IWK(1)
WRITE (NOUT,’(’’ Total number of rejected timesteps =’’, I5)’)

+ IWK(2)
WRITE (NOUT,*)
WRITE (NOUT,

+ ’(’’ T o t a l n u m b e r o f ’’)’)
WRITE (NOUT,

+ ’(’’ Residual Jacobian Newton ’’ , ’’ Lin sys’’)’
+ )

WRITE (NOUT,
+ ’(’’ evals evals iters ’’ , ’’ iters’’)’
+ )

WRITE (NOUT,’(’’ At level ’’)’)
MAXLEV = OPTI(1)
DO 80 J = 1, MAXLEV

IF (IWK(J+2).NE.0) WRITE (NOUT,’(I6,4I10)’) J, IWK(J+2),
+ IWK(J+2+MAXLEV), IWK(J+2+2*MAXLEV), IWK(J+2+3*MAXLEV)

*
80 CONTINUE

WRITE (NOUT,*)
WRITE (NOUT,

+ ’(’’ M a x i m u m n u m b e r ’’, ’’ o f’’)’)
WRITE (NOUT,

+ ’(’’ Newton iters Lin sys iters ’’)’)
WRITE (NOUT,’(’’ At level ’’)’)
DO 100 J = 1, MAXLEV

IF (IWK(J+2).NE.0) WRITE (NOUT,’(I6,2I14)’) J,
+ IWK(J+2+4*MAXLEV), IWK(J+2+5*MAXLEV)

100 CONTINUE
WRITE (NOUT,*)

*
120 CONTINUE

*
STOP
END

*
SUBROUTINE INIDM(MAXPTS,XMIN,XMAX,YMIN,YMAX,NX,NY,NPTS,NROWS,

+ NBNDS,NBPTS,LROW,IROW,ICOL,LLBND,ILBND,LBND,IERR)
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalar Arguments ..
DOUBLE PRECISION XMAX, XMIN, YMAX, YMIN
INTEGER IERR, MAXPTS, NBNDS, NBPTS, NPTS, NROWS, NX, NY

* .. Array Arguments ..
INTEGER ICOL(*), ILBND(*), IROW(*), LBND(*), LLBND(*),
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+ LROW(*)
* .. Local Scalars ..

INTEGER I, IFAIL, J, LENIWK
* .. Local Arrays ..

INTEGER ICOLD(105), ILBNDD(28), IROWD(11), IWK(122),
+ LBNDD(72), LLBNDD(28), LROWD(11)
CHARACTER*33 PGRID(11)

* .. External Subroutines ..
EXTERNAL D03RYF

* .. Data statements ..
DATA ICOLD/0, 1, 2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4,
+ 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 8, 9, 10, 0,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5,
+ 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6,
+ 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8/
DATA ILBNDD/1, 2, 3, 4, 1, 4, 1, 2, 3, 4, 3, 4, 1, 2,

+ 12, 23, 34, 41, 14, 41, 12, 23, 34, 41, 43, 14,
+ 21, 32/
DATA IROWD/0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10/
DATA LBNDD/2, 4, 15, 26, 37, 46, 57, 68, 79, 88, 98,

+ 99, 100, 101, 102, 103, 104, 96, 86, 85, 84, 83,
+ 82, 70, 59, 48, 39, 28, 17, 6, 8, 9, 10, 11, 12,
+ 13, 18, 29, 40, 49, 60, 72, 73, 74, 75, 76, 77,
+ 67, 56, 45, 36, 25, 33, 32, 42, 52, 53, 43, 1,
+ 97, 105, 87, 81, 3, 7, 71, 78, 14, 31, 51, 54,
+ 34/
DATA LLBNDD/1, 2, 11, 18, 19, 24, 31, 37, 42, 48, 53,

+ 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
+ 68, 69, 70, 71, 72/
DATA LROWD/1, 4, 15, 26, 37, 46, 57, 68, 79, 88, 97/

* .. Executable Statements ..
NX = 11
NY = 11

*
* Check MAXPTS against rough estimate of NPTS
*

NPTS = NX*NY
IF (MAXPTS.LT.NPTS) THEN

IERR = -1
RETURN

END IF
*

XMIN = 0.0D0
YMIN = 0.0D0
XMAX = 1.0D0
YMAX = 1.0D0

*
NROWS = 11
NPTS = 105
NBNDS = 28
NBPTS = 72

*
DO 20 I = 1, NROWS

LROW(I) = LROWD(I)
IROW(I) = IROWD(I)

20 CONTINUE
*

DO 40 I = 1, NBNDS
LLBND(I) = LLBNDD(I)
ILBND(I) = ILBNDD(I)

40 CONTINUE
*

DO 60 I = 1, NBPTS
LBND(I) = LBNDD(I)

60 CONTINUE
*

DO 80 I = 1, NPTS
ICOL(I) = ICOLD(I)

80 CONTINUE
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*
WRITE (NOUT,*) ’Base grid:’
WRITE (NOUT,*)
LENIWK = 122
IFAIL = -1

*
CALL D03RYF(NX,NY,NPTS,NROWS,NBNDS,NBPTS,LROW,IROW,ICOL,LLBND,

+ ILBND,LBND,IWK,LENIWK,PGRID,IFAIL)
*

IF (IFAIL.EQ.0) THEN
WRITE (NOUT,*) ’ ’
DO 100 J = 1, NY

WRITE (NOUT,*) PGRID(J)
WRITE (NOUT,*) ’ ’

100 CONTINUE
WRITE (NOUT,*) ’ ’

END IF
*

RETURN
END

*
SUBROUTINE PDEIV(NPTS,NPDE,T,X,Y,U)

* .. Parameters ..
DOUBLE PRECISION EPS
PARAMETER (EPS=1D-3)

* .. Scalar Arguments ..
DOUBLE PRECISION T
INTEGER NPDE, NPTS

* .. Array Arguments ..
DOUBLE PRECISION U(NPTS,NPDE), X(NPTS), Y(NPTS)

* .. Local Scalars ..
DOUBLE PRECISION A
INTEGER I

* .. Intrinsic Functions ..
INTRINSIC EXP

* .. Executable Statements ..
DO 20 I = 1, NPTS

A = (-4.0D0*X(I)+4.0D0*Y(I)-T)/(32.0D0*EPS)
IF (A.LE.0.0D0) THEN

U(I,1) = 0.75D0 - 0.25D0/(1.0D0+EXP(A))
U(I,2) = 0.75D0 + 0.25D0/(1.0D0+EXP(A))

ELSE
U(I,1) = 0.75D0 - 0.25D0*EXP(-A)/(EXP(-A)+1.0D0)
U(I,2) = 0.75D0 + 0.25D0*EXP(-A)/(EXP(-A)+1.0D0)

END IF
20 CONTINUE

*
RETURN
END

*
SUBROUTINE PDEF(NPTS,NPDE,T,X,Y,U,UT,UX,UY,UXX,UXY,UYY,RES)

* .. Parameters ..
DOUBLE PRECISION EPS
PARAMETER (EPS=1D-3)

* .. Scalar Arguments ..
DOUBLE PRECISION T
INTEGER NPDE, NPTS

* .. Array Arguments ..
DOUBLE PRECISION RES(NPTS,NPDE), U(NPTS,NPDE), UT(NPTS,NPDE),

+ UX(NPTS,NPDE), UXX(NPTS,NPDE), UXY(NPTS,NPDE),
+ UY(NPTS,NPDE), UYY(NPTS,NPDE), X(NPTS), Y(NPTS)

* .. Local Scalars ..
INTEGER I

* .. Executable Statements ..
DO 20 I = 1, NPTS

RES(I,1) = UT(I,1) - (-U(I,1)*UX(I,1)-U(I,2)*UY(I,1)
+ +EPS*(UXX(I,1)+UYY(I,1)))

RES(I,2) = UT(I,2) - (-U(I,1)*UX(I,2)-U(I,2)*UY(I,2)
+ +EPS*(UXX(I,2)+UYY(I,2)))

20 CONTINUE
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RETURN
END
SUBROUTINE BNDRY(NPTS,NPDE,T,X,Y,U,UT,UX,UY,NBNDS,NBPTS,LLBND,

+ ILBND,LBND,RES)
* .. Parameters ..

DOUBLE PRECISION EPS
PARAMETER (EPS=1D-3)

* .. Scalar Arguments ..
DOUBLE PRECISION T
INTEGER NBNDS, NBPTS, NPDE, NPTS

* .. Array Arguments ..
DOUBLE PRECISION RES(NPTS,NPDE), U(NPTS,NPDE), UT(NPTS,NPDE),

+ UX(NPTS,NPDE), UY(NPTS,NPDE), X(NPTS), Y(NPTS)
INTEGER ILBND(NBNDS), LBND(NBPTS), LLBND(NBNDS)

* .. Local Scalars ..
DOUBLE PRECISION A
INTEGER I, K

* .. Intrinsic Functions ..
INTRINSIC EXP

* .. Executable Statements ..
DO 20 K = LLBND(1), NBPTS

I = LBND(K)
A = (-4.0D0*X(I)+4.0D0*Y(I)-T)/(32.0D0*EPS)
IF (A.LE.0.0D0) THEN

RES(I,1) = U(I,1) - (0.75D0-0.25D0/(1.0D0+EXP(A)))
RES(I,2) = U(I,2) - (0.75D0+0.25D0/(1.0D0+EXP(A)))

ELSE
RES(I,1) = U(I,1) - (0.75D0-0.25D0*EXP(-A)/(EXP(-A)+1.0D0))
RES(I,2) = U(I,2) - (0.75D0+0.25D0*EXP(-A)/(EXP(-A)+1.0D0))

END IF
20 CONTINUE

*
RETURN
END

*
SUBROUTINE MONIT(NPDE,T,DT,DTNEW,TLAST,NLEV,XMIN,YMIN,DXB,DYB,

+ LGRID,ISTRUC,LSOL,SOL,IERR)
* .. Parameters ..

INTEGER MAXPTS, NOUT
PARAMETER (MAXPTS=2500,NOUT=6)

* .. Scalar Arguments ..
DOUBLE PRECISION DT, DTNEW, DXB, DYB, T, XMIN, YMIN
INTEGER IERR, NLEV, NPDE
LOGICAL TLAST

* .. Array Arguments ..
DOUBLE PRECISION SOL(*)
INTEGER ISTRUC(*), LGRID(*), LSOL(NLEV)

* .. Scalars in Common ..
INTEGER IOUT

* .. Arrays in Common ..
DOUBLE PRECISION TWANT(2)

* .. Local Scalars ..
INTEGER IFAIL, IPSOL, IPT, LEVEL, NPTS

* .. Local Arrays ..
DOUBLE PRECISION UEX(105,2), X(MAXPTS), Y(MAXPTS)

* .. External Subroutines ..
EXTERNAL D03RZF, PDEIV

* .. Common blocks ..
COMMON /OTIME/TWANT, IOUT

* .. Executable Statements ..
IFAIL = -1
IF (TLAST) THEN

DO 40 LEVEL = 1, NLEV
IPSOL = LSOL(LEVEL)

*
* Get grid information
*

CALL D03RZF(LEVEL,NLEV,XMIN,YMIN,DXB,DYB,LGRID,ISTRUC,NPTS,
+ X,Y,MAXPTS,IFAIL)

IF (IFAIL.NE.0) THEN
IERR = 1
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RETURN
END IF

*
IF (IOUT.EQ.2 .AND. LEVEL.EQ.1) THEN

*
* Get exact solution
*

CALL PDEIV(NPTS,NPDE,T,X,Y,UEX)
WRITE (NOUT,*)
WRITE (NOUT,

+’(’’ Solution at every 2nd grid point ’’, ’’in level 1 at time ’’,
+ F8.4,’’:’’)’) T

WRITE (NOUT,*)
WRITE (NOUT,’(7X,A,10X,A,8X,A,5X,A,4X,A,4X,A)’) ’x’, ’y’,

+ ’approx u’, ’exact u’, ’approx v’, ’exact v’
WRITE (NOUT,*)
IPSOL = LSOL(LEVEL)
DO 20 IPT = 1, NPTS, 2

WRITE (NOUT,’(6(1X,E11.4))’) X(IPT), Y(IPT),
+ SOL(IPSOL+IPT), UEX(IPT,1), SOL(IPSOL+NPTS+IPT),
+ UEX(IPT,2)

20 CONTINUE
WRITE (NOUT,*)

END IF
*

40 CONTINUE
END IF

*
RETURN
END

9.2 Program Data

None.

9.3 Program Results

D03RBF Example Program Results
Base grid:

23 3 3 3 3 3 3 3 34 XX XX

2 .. .. .. .. .. .. .. 4 XX XX

2 .. 14 1 1 1 1 1 41 XX XX

2 .. 4 23 3 3 3 3 3 3 34

2 .. 4 2 .. .. .. .. .. .. 4

2 .. 4 2 .. 14 1 1 21 .. 4

2 .. 4 2 .. 4 XX XX 2 .. 4

2 .. 4 2 .. 43 3 3 32 .. 4

2 .. 4 2 .. .. .. .. .. .. 4

2 .. 4 12 1 1 1 1 1 1 41

12 1 41 XX XX XX XX XX XX XX XX

Statistics:
Time = 0.2500
Total number of accepted timesteps = 14
Total number of rejected timesteps = 0

T o t a l n u m b e r o f
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Residual Jacobian Newton Lin sys
evals evals iters iters

At level
1 196 14 28 14
2 196 14 28 22
3 196 14 28 25
4 196 14 28 31
5 141 10 21 29

M a x i m u m n u m b e r o f
Newton iters Lin sys iters

At level
1 2 1
2 2 1
3 2 1
4 2 2
5 3 2

Solution at every 2nd grid point in level 1 at time 1.0000:

x y approx u exact u approx v exact v

0.0000E+00 0.0000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.2000E+00 0.0000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.1000E+00 0.1000E+00 0.5002E+00 0.5000E+00 0.9998E+00 0.1000E+01
0.3000E+00 0.1000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.5000E+00 0.1000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.7000E+00 0.1000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.9000E+00 0.1000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.0000E+00 0.2000E+00 0.5005E+00 0.5005E+00 0.9995E+00 0.9995E+00
0.2000E+00 0.2000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.4000E+00 0.2000E+00 0.5001E+00 0.5000E+00 0.9999E+00 0.1000E+01
0.6000E+00 0.2000E+00 0.4999E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.8000E+00 0.2000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.1000E+01 0.2000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.1000E+00 0.3000E+00 0.5000E+00 0.5005E+00 0.1000E+01 0.9995E+00
0.3000E+00 0.3000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.5000E+00 0.3000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.7000E+00 0.3000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.9000E+00 0.3000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.0000E+00 0.4000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.2000E+00 0.4000E+00 0.5005E+00 0.5005E+00 0.9995E+00 0.9995E+00
0.4000E+00 0.4000E+00 0.5002E+00 0.5000E+00 0.9998E+00 0.1000E+01
0.8000E+00 0.4000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.1000E+01 0.4000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.1000E+00 0.5000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.3000E+00 0.5000E+00 0.5005E+00 0.5005E+00 0.9995E+00 0.9995E+00
0.5000E+00 0.5000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.7000E+00 0.5000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.9000E+00 0.5000E+00 0.5001E+00 0.5000E+00 0.9999E+00 0.1000E+01
0.0000E+00 0.6000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.2000E+00 0.6000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.4000E+00 0.6000E+00 0.5000E+00 0.5005E+00 0.1000E+01 0.9995E+00
0.6000E+00 0.6000E+00 0.4999E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.8000E+00 0.6000E+00 0.4998E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.1000E+01 0.6000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.1000E+00 0.7000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.3000E+00 0.7000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.5000E+00 0.7000E+00 0.5005E+00 0.5005E+00 0.9995E+00 0.9995E+00
0.7000E+00 0.7000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.9000E+00 0.7000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.0000E+00 0.8000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.2000E+00 0.8000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.4000E+00 0.8000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.6000E+00 0.8000E+00 0.5005E+00 0.5005E+00 0.9995E+00 0.9995E+00
0.8000E+00 0.8000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.1000E+00 0.9000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.3000E+00 0.9000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.5000E+00 0.9000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.7000E+00 0.9000E+00 0.4999E+00 0.5005E+00 0.1000E+01 0.9995E+00
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0.0000E+00 0.1000E+01 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.2000E+00 0.1000E+01 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.4000E+00 0.1000E+01 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.6000E+00 0.1000E+01 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.8000E+00 0.1000E+01 0.5005E+00 0.5005E+00 0.9995E+00 0.9995E+00

Statistics:
Time = 1.0000
Total number of accepted timesteps = 45
Total number of rejected timesteps = 0

T o t a l n u m b e r o f
Residual Jacobian Newton Lin sys

evals evals iters iters
At level

1 630 45 90 45
2 630 45 90 78
3 630 45 90 87
4 630 45 90 124
5 575 41 83 122

M a x i m u m n u m b e r o f
Newton iters Lin sys iters

At level
1 2 1
2 2 1
3 2 1
4 2 2
5 3 2
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